Thermodynamic Properties of Polar Substances Enthalpy of Hydrocarbon-Alcohol Systems

TRUMAN S. STORVICK¹ and J. M. SMITH² Purdue University, Lafayette, Ind.

THE INDUSTRIAL interest in petroleum compounds has generated large amounts of data for both pure components and mixtures of hydrocarbons. These data and the general similarity in molecular structure of the components have made it possible to develop reasonably precise methods for predicting thermodynamic properties of hydrocarbons over a wide range of conditions. When chemically dissimilar mixtures are encountered, much larger deviations from ideal behavior are observed. Furthermore, data for these systems are meager. As a result, adequate prediction methods have not appeared for such systems. This article presents experimental enthalpy data for the binaries and pure components in the systems benzene-ethyl alcohol and n-pentane-ethyl alcohol.

Enthalpy data for nonpolar-polar mixtures over a range of temperatures and pressures are generally not available. McCracken and Smith (4) have reported measurements on binary mixtures of benzene-methanol over extended ranges of temperature and pressure. They proposed a correlating procedure based upon association of the methanol. Data for one composition of a ternary system, *n*-hexane-benzenemethanol, were also reported.

SCOPE OF EXPERIMENTAL INVESTIGATION

Enthalpies were measured for pure ethyl alcohol, benzene, and *n*-pentane, and binary mixtures containing 25, 50, and 75 mole % ethyl alcohol in benzene and *n*-pentane. These data covered a temperature range of 250° to 500° F. at pressures from 50 to 1700 p.s.i.a. Additional information was obtained in the critical region.

Heat of mixing data of the liquids were used in order to place all mixture enthalpies on the same basis: pure liquid components at 77° F. and their individual vapor pressures. The heats of mixing of Schnaible and others (7) were used for the benzene-ethyl alcohol system. Measured values for the *n*-pentane-ethyl alcohol system were not available, but were estimated to be 7.8, 9.4, and 8.7 B.t.u. per pound of mixture at 25° C. for the 75, 50, and 25 mole % ethyl alcohol mixtures, respectively. The experimental results covered both liquid and vapor regions.

EXPERIMENTAL

The experimental method was the same as used by McCracken and Smith (4). This involves the measurement of the energy transferred from the mixture flowing through a double-jacket calorimeter to boiling Freon 11. The enthalpy change between the states at the inlet and the outlet to the calorimeter could be calculated from the weight of Freon evaporated and its latent heat of vaporization. The mixture leaving the calorimeter was always cooled to a temperature within 2° F. of the atmospheric boiling point of the Freon, 74° F. The exit stream was liquid at this temperature for all of the mixtures investigated.

Detailed drawings and description of the apparatus have been presented (4).

RESULTS

The steady-state energy balance across the calorimeter, neglecting kinetic and potential energy changes, gives the

¹ Present address, University of Missouri, Columbia, Mo.

² Present address, Northwestern University, Evanston, Ill.

following expression for the change in enthalpy of the fluid stream:

$$\Delta H_c = \frac{-L_f \mathbf{W}_f}{\mathbf{W}_m} \tag{1}$$

Correction must be made to the ΔH_c values obtained from Equation 1 to refer the enthalpies to the desired standard state. There are three corrections.

Entrance and Exit Temperature Deviations. A correction was necessary to allow for the deviation of the actual inlet temperature from the desired isothermal temperatures. This correction, Δh_1 , was generally less than 2 B.t.u. per pound. Small corrections, Δh_2 , were also made to account for the outlet temperatures which were different from the desired 77° F. reference temperature.

Effect of Pressure on Liquid Enthalpy at 77° F. An approximate correlation of the isothermal effect of pressure on the enthalpy of liquids has been prepared by Hougen and Watson (2). Calculations for the pure liquids used in this work indicated that at 77° F., the change in enthalpy was less than the assignable experimental error for pressures from the vapor pressure up to the critical value. On this basis, the enthalpy of the liquids at 77° F. and elevated pressure were assumed to be the same as for the liquid in its standard state.

Heats of Mixing. The pure component enthalpies at 77° F. and their vapor pressures are related to the enthalpy of the exit stream through the heat of mixing, ΔH_m^0 , by the expression:

$$H_m^0 = \Delta H_m^0 + \sum x_i H_i^0 \tag{2}$$

The superscript zero refers to the datum state. The mixture enthalpy, H_m^0 , is equal to the mixture enthalpy from the calorimeter because the summation of $x_i H_i^0$ is zero by the definition of the standard states.

Figure 1. Pressure-enthalpy diagram Mixture: 75 mole % benzene, 25 mole % ethyl alcohol Datum: H = O, pure liquid components at 77° F.

When the three corrections are applied to Equation 1, the enthalpy in any state, H_1 , referred to the pure liquid at the standard state of 77° F. is given by the expression:

$$H_1 = \frac{L_f W_f}{W_m} + \Delta h_1 + \Delta h_2 + \Delta H_m^0 \tag{3}$$

Operation of the equipment was most convenient when the inlet temperature was held constant and the pressure varied as each sample was taken . Each series of runs at constant temperature establishes an isotherm on a pressureenthalpy diagram. The intersection of the three distinct curves obtained below the critical temperature represented points on the phase envelope. A series of isotherms would then define the phase envelope for the mixture. The data are illustrated by the points shown in Figures 1 and 2 on pressure-enthalpy coordinates. |Figures for other compositions of the binary systems and for the pure components are included in reference (9).] The curves represent smoothed data obtained by cross-plotting the pressureenthalpy data on temperature-enthalpy and pressure-temperature diagrams and adjusting the curves until agreement was obtained among the three plots. Additional data were taken in the critical region at constant pressure at close temperature intervals. These data were used to define more accurately the critical region on the temperature-enthalpy diagrams, and they are not shown in Figures 1 and 2.

PRECISION OF RESULTS

Enthalpy data for the mixtures are not available for comparison with the data. Values have been published for pure benzene, *n*-pentane, and ethyl alcohol. Organick and Studhalter (5) presented a pressure-enthalpy diagram for benzene based on available heat capacity, latent heat of vaporization, and P-V-T data. The standard deviation between the experimental data for benzene obtained in this study and these literature values was 1.8 B.t.u. per pound. with a mean difference of 0.2 B.t.u. per pound. A similar comparison of the experimental *n*-pentane data with the pressure-enthalpy data presented by Edmister (1) yielded a standard deviation of 2.8 B.t.u. per pound. As the possible errors in the values presented in these references are at

Table I.	The	modyr S	amic Pro Superhea	operties ted Benz	of Sat ene	urated	and of			
	(Datum: $H = O$, liquid benzene at 77° F.)									
			Saturate	ed Benzer	ne					
D	-			Ent	halpy, B.	t.u./Lb.				
DSIA	1	।emp., ∘ ⋤		Liquid		Van)r			
P.S.I.A.		г, 200		110		• apt	51			
100		320		110		253				
200		388		146		2/4				
300		430		102		200				
400		47Z		190		201				
600		597		240		303				
700		550		267 295						
716	553			283		283				
			Superhea	ted Benze	ene					
			- Ter	nperatur	e, ° F.					
	250	300	350	400	450	500	550			
			Enth	halpy, B.t	.u./Lb.					
0	240	256	276	295	316	338	361			
100	74	- 99	266	289	310	331	356			
200	74	99	125	280	303	328	351			
300	74	99	125	152	295	322	345			
400			125	152	181	314	338			
500				152	181	219	330			
600		• • •	• • •		181	217	317			
700	•••	•••	• • •	• • •	• • •	210	960			
800	• • •	• • •	• • •	• • •	•••	213	200			
1000	• • •	•••	•••	• • •	•••	212	200			
^a Fluid s	 aturate	d at thi	s condition	n.	• • •	411	240			

Table II.	Thermodynamic	Properties	of	Saturated	and	of
	Superhe	ated <i>n</i> -Pent	lane	•		

(Datum: H = O, liquid *n*-pentane at 77° F.)

	2	aturate	ea n-rei	itane		
Pressure.	Te	mp	_	Enthal	py, B.t	.u/Lb.
P.S.I.A:	0	F.		Liquid		Vapor
100	2	23		91		216
200	$\overline{2}$	87		130		236
300	3	30		165		254
400	š	63		194		260
450	š	78		211		251
485	3 3	87		$\bar{2}\bar{3}\bar{6}$		$\bar{2}\bar{3}\bar{6}$
	Su	perhea	ted n-Pe	entane		
			Temp	erature,	° F.	
	250	300	350	400	450	500
			Enthal	y, B.t.u	1./Lb.	
0	235	262	291	322	349	380
100	227	254	285	315	345	376
200	105	244	278	309	339	372
300	105	140	268	301	333	367
400	105	140	180	289	325	361
500	105	140	178	269	316	354
600		140	178	233	303	347
700			178	222	287	339
800				220	275	330
900					266	321
1000					261	314
1100	• • •	• • •			257	307

Table III. Thermodynamic Properties of Saturated and of Superheated Ethyl Alcohol

(Datum: H = 0, liquid ethyl alcohol at 77° F.)

Saturated Ethyl Alcohol

Pressure.	Temp	Enthalpy,	thalpy, B.t.u./Lb.				
P.S.I.A. °F.		Liquid	Vapor				
100	278	148	453				
200	327	188	461				
300	360	221	464				
400	387	249	466				
500	409	276	467				
600	428	298	464				
700	443	317	455				
800	456	331	441				
900	467	361	413				
927	470	388	388				

Superheated Ethyl Alcohol

		Temperature, ° F.								
	250	300	350	400	450	500				
		E	nthalpy,	B.t.u./L	.b.					
0	463	487	510	534	560	587				
100	123	469	496	524	552	581				
200	123	166	479	512	543	573				
300	123	166	212	499	533	566				
400		166	212	482	521	558				
500		166	212	266	507	548				
600			212	266	489	537				
700				266	464	525				
800				266	321	511				
900					319	495				
1000					318	475				
1100					318	444				
1200					318	411				
1300						395				
1400						387				
1500		• • •	•••	•••		381				

least as large as the quoted deviations, the results for benzene and *n*-pentane verify the accuracy of the experimental procedure. Information on ethyl alcohol presented by Smith and Reid (8) and more recently by Papini and Cuomo (6) agreed satisfactorily with the experimental data in the low pressure regions. At high pressures, wide deviations were observed. Inaccuracies introduced in computing enthalpies from approximate volumetric data for ethyl alcohol probably contributed a major portion of this

Figure 2. Pressure-enthalpy diagram Mixture: 75 mole % n-pentane, 25 mole % ethyl alcohol Datum: H = O, pure liquid components at 77° F.

Table IV.	Thermodynamic	Properties	of a	Saturated	and			
of a Superh	eated Mixture Co	ontaining 75	i Mole	% Benzene	and			
25 Mole % Ethyl Alcohol								

(Datum: l	H = 0, p	oure li	quid comp	onents at	77°]	F.)			
	Sa	aturat	ed Mixtur	e					
]	Liquid	1	Vapor					
Pressure,	Temp., Enthalpy,			Temp.	,	Enthalpy,			
P.S.I.A.	° F. B.t.u./lb.			° F .		$\mathbf{B}.t.\mathbf{u}./lb.$			
100	270		105	301		285			
200	342		151	365		307			
300	384		176	407		317			
400	417		196	440		325			
500	444		218	469		329			
600	469		242	493		326			
650	483	257		500		319			
693	502	290		502		290			
	Superheated Mixture								
			Tempera	ture, ° F.					
	250	300	350	400	450	500			
]	Enthalpy,	B.t.u./Lb).				
0	275	293	313	333	354	376			
100	96	277°	308	329	351	373			
200	96	125	209ª	322	346	369			
300	96	125	155	273°	340	365			
400		125	155	185	331	358			
500	• • •		155	185	238	· 349			
600	• • •	• • •	155	185	219	333			
700	• • •	•••	• • •	•••	218	279			
800	• • •	• • •	•••	• • •	•••	256			
900	• • •	• • •	• • •	• • •		254			
"Two phase region	1.								

Table V. Thermodynamic Properties of a Saturated and of a superheated Mixture Containing 50 Mole % Benzene and 50 Mole % Ethyl Alcohol

		Liqu	uid	Vap	por		
Pressure, P.S.I.A.	Tem] ° F	Temp., Enthalpy, Te		Temp ° F.).,	Enthalpy, B.t.u./lb.	
100	269)	121	281		324	
200	325	5	161	337		342	
300	365	5	189	375		350	
400	396	3	211	405		355	
500	420)	231	432		357	
600	442	2	249	455		357	
700	462	2	274	473		$346 \\ 325 \\ 313$	
750	474	1	301	477			
756	478	3	313	478			
	S	uperhe	eated Mixtu	re			
			Tempera	ture, ° F.			
	250	300	350	400	450	500	
			Enthalpy,	B.t.u./L	b.		
0	321	341	362	383	406	427	
100	109	333	357	378	401	424	
200	109	143	350	371	395	419	
300	109	143	178	362	387	414	
400	109	143	178	270	378	408	
000	•••	143	178	214	- 300	400	
600 700		• • •	• • •	214	322	391	
200	• • •	• • •	• • •	214	200	019	
000	•••		• • •	• • •	200	201	
1000	•••	• • •	• • •	• • •	204	207	
1100	• • •	•••	•••	• • •	• • •	201	
1200	• • •				•••	291	

Table VI. Thermodynamic Properties of a Saturated and of a Superheated Mixture Containing 25 Mole % Benzene and 75 Mole % Ethyl Alcohol

(Datum: H = 0, pure liquid components at 77° F.) Saturated Mixture

Pressure, Temp., Enthalpy, Temp., Enthalpy, P.S.I.A. ° F. B.t.u./lb. ° F. B.t.u./lb. ° F. B.t.u./lb. 100 273 134 278 377 200 321 175 327 391 300 355 202 362 400 400 381 224 390 405 500 403 244 414 407 600 424 262 435 407 700 443 279 453 404 800 460 300 469 394 900 475 334 479 361 906 479 348 479 348 Temperature, ° F. 250 300 350 400 450 500 0 382 403 425 448 472 496 100 96 357 19			Liqu	id		Vapor			
P.S.I.A. ° F. B.t.u./lb. ° F. B.t.u./lb. 100 273 134 278 377 200 321 175 327 391 300 355 202 362 400 400 381 224 390 405 500 403 244 414 407 600 424 262 435 407 700 443 279 453 404 800 460 300 469 394 900 475 334 479 361 906 479 348 479 361 906 479 348 479 361 906 479 348 479 361 906 479 348 479 361 906 479 348 479 361 906 167 199 413 444 100 96 390 416 440 466 492 200 <td< td=""><td>Pressure,</td><td>Temp</td><td>•,</td><td>Enthalpy.</td><td>Temp.</td><td>,</td><td colspan="2">Enthalpy</td></td<>	Pressure,	Temp	•,	Enthalpy.	Temp.	,	Enthalpy		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	P.S.I.A.	° F.	<i>.</i>	B.t.u./lb.	° F.	<i>.</i>	B.t.u./lb.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	273		134	278		377		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	321		175	327		391		
	300	355		202	362		400		
	400	381		224	390		405		
	500	403		244	414		407		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600	424		262	435		407		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700	443		279	453		404		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800	460		300	469		394		
906 479 348 479 348 Superheated Mixture Temperature, ° F. 250 300 350 400 450 500 Enthalpy, B.t.u./Lb. 0 382 403 425 448 472 496 100 96 390 416 440 466 492 200 96 157 199 424 452 482 400 157 199 413 444 475 500 199 241 433 468 600 157 199 241 433 468 600 241 419 458 700 241 368 ^a 447 800 241 368 ^a 447 800 241 368 ^a 447 800 241 368 ^a 447 800 241 286 434 900 241 286 434 900 241 368 ^a 447 800 241 286 434 900 241 368 ^a 447 800 241 368 ^a 447 800 241 286 434 900 344 130 100 332 1500 330 ^a Two phase region.	900	475		334	479		361		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	906	479		348	479		348		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Su	perhe	eated Mixt	ure				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Temper	ature, ° F.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		250	300	350	400	450	500		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Enthalpy	, B.t.u./Lt)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	382	403	425	448	472	496		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	96	390	416	440	466	492		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	96	157	405	433	460	487		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	96	157	199	424	452	482		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	400		157	199	413	444	475		
	500			199	241	433	468		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600				241	419	458		
800 241 286 434 900 284 417 1000 284 394 1100 284 394 1200 344 1300 332 1400 332 1500 330 ^a Two phase region.	700				241	368°	447		
900 284 417 1000 284 394 1100 284 360 1200 344 1300 335 1400 332 1500 330 ^a Two phase region.	800				241	286	434		
1000 284 394 1100 284 360 1200 344 1300 335 1400 332 1500 330 ^a Two phase region.	900		• • •	• • •		284	417		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1000					284	394		
1200 344 1300 335 1400 332 1500 330 ^a Two phase region.	1100		• • •			284	360		
1300 335 1400 332 1500 330 ^a Two phase region.	1200		• • •	• • •			344		
1400 332 1500 330 ^a Two phase region.	1300			• • •		• • •	335		
⁶ Two phase region 330	1400	• • •	• • •		•••	• • •	332		
"Two phase region.	1500	• • •	• • •	• • •	• • •	• • •	330		
	"Two phase regio	on.							

discrepancy. Hence, the experimental data presented in this paper are believed to be the most reliable information for ethyl alcohol.

The maximum assignable experimental errors were divided into the following sources:

	Maximum Error,
Source	B.t.u./Pound
Temperature measurement	0.3
Pressure measurement	0.2
Freon collecting and weighing	0.2 - 0.5
Sample collecting and weighing	0.2 - 1.5
Total	0.9 - 2.5

The high error in the sample collecting and weighing occured when runs were made on materials with relatively high enthalpies. A small error in weighing these samples corresponds to a large error in the measured enthalpy. For most operating conditions, the maximum total assignable error should be nearer the lower limit, about 1 B.t.u. per pound.

TABULATED DATA

Figures 1 and 2 illustrate the type of smoothed P-H diagram obtained for each pure component and mixture studied. Tables of values were prepared by reading points on the smoothed curves. These results are shown in Tables I to IX. The tables extend up to the critical point, and the critical temperature and pressure for each composition are given.

Generalized correlations are available (2, 3) for predicting the effect of pressure on the enthalpy of gases. The Hougen and Watson method (2) was originally developed for hydrocarbons and later extended (3) to all substances. The data in Tables I to IX can be used to test these correlations by comparing the enthalpy deviation from the ideal gas, or zero pressure, values. As would be expected, the agreement is reasonably good for benzene, average deviations being 1.4 B.t.u. per pound for correlation (2) and 0.65 B.t.u. per pound for correlation (3). Similarly, the correlations predict

Table VII.Thermodynamic Properties of a Saturated and of
a Superheated Mixture Containing 75 Mole % *n*-Pentane and
25 Mole % Ethyl Alcohol

(Datum: H = O, pure liquids components at 77° F.)

		Satur	ated Mixtu	re					
		Liqu	ıid		Vap	or			
Pressure,	Tem	p.,	Enthalpy,	Temp).,	Enthalpy,			
P.S.I.A.	°F		B.t.u./lb.	° F.		B.t.u./lb.			
200	253	}	131	276		282			
300	302	2	173	318		294			
400	334	ł	196	345		295			
500	359)	219	365		291			
550	370)	236	373		283			
582	378	1	262	378		262			
	S	uperh	eated Mixt	ure					
		Temperature, ° F.							
· ·	250	300	350	400	450	500			
			Enthalpy	, B.t.u./L	b.				
0	287	314	342	369	393	423			
100	277	305	336	362	389	420			
200	129	297	326	356	384	415			
300	129	171	314	346	378	409			
400	129	171	300	337	371	402			
500	• • •	171	209	324	362	395			
600		• • •	208	305	353	387			
700	•••	• • •	208	275	341	380			
800	• • •	• • •	• • •	260	328	373			
900	• • •	• • •	• • •	204	313	305			
1100	•••	• • •		292	302	308			
1200	•••	• • •	• • •	•••	290	202			
1200	• • •	• • •	• • •	•••	293	040 941			
1000	• • •	• • •	• • •	•••	•••	541			

Table VIII.Thermodynamic Properties of a Saturated and of
a Superheated Mixture Containing 50 Mole % n-Pentane and
50 Mole % Ethyl Alcohol

(Datum:	H =	О,	pure	liqu	id	components	at	77°	F.)
			_	-						

Pr P.

	Satu	irated Mixture			
	Li	quid	Vapor		
essure,	Temp.,	Enthalpy,	Temp.,	Enthalpy,	
S.I.A.	° F.	B.t.u./lb.	° F .	B.t.u./lb.	
200	265	147	284	328	
300	296	174	317	336	
400	323	200	342	341	
500	347	228	364	341	
600	372	262	381	332	
650	386	290	389	315	
657	390	304	390	304	

	s	uperheat	ted Mixt	ure					
		Temperature, ° F.							
	250	300	$35\hat{0}$	400	450	500			
		Enthalpy, B.t.u./Lb.							
0	333	359	386	411	436	466			
100	320	350	380	407	433	463			
200	137	338	372	401	428	459			
300	137	209°	362	394	423	454			
400	137	179	346	385	418	449			
500	137	179	251°	372	410	442			
600			229	353	401	435			
700			227	318	389	428			
800				282	373	419			
900			• • •	274	356	410			
1000				270	342	398			
1100			• • •		331	388			
1200					324	380			
1300					320	374			
1400			• • •		316	369			
^a Two phase reg	gion.								

Table IX.Thermodynamic Properties of a Saturated and of
a Superheated Mixture Containing 25 Mole % n-Pentane and
75 Mole % Ethyl Alcohol

(Datum: H = O, pure liquid components at 77° F.) Saturated Mixture

	Liquid			Vapor		
Pressure, P.S.I.A.	Tem ° F	ip., 7.	Enthalpy B.t.u./lb	, Temp . °F.	•.,	Enthalpy, B.t.u./lb.
$100 \\ 200$	$245 \\ 293$		$131 \\ 171$	263 309		$385 \\ 400$
300	323		201	339		403
400 500	34 37	8 0	$\frac{227}{251}$	363 385		$405 \\ 405$
600	38	9	273	403		404
800	40 42	5	294 323	419 430		399 377
826	43	2	350	432		350
	\mathbf{S}	uperhe	ated Mixt	ure		
			Temper	ature, ° F.		
	250	300	350 Eachtaile	400	450	500
			Enthalpy	, B.t.u./Lo).	
0	393	418	443	469	494	525 521
200	134	279°	425	405	484	517
300	134	178	411_{250^a}	446	478	511 505
500	134	178	$\frac{230}{228}$	421	462	499
600 700	• • •	•••	228	381°	451	490
800	•••		228	282	419	401
900	•••	•••	• • •	280	389	459
1100	• • •	· · · · · ·	• • •	219	342	440
1200	• • •	• • •	• • •	• • •	333	414
1300	• • •	•••	• • •	•••	328 324	403 395
1500	• • •				322	390
"Two phase region	•					

the data for n-pentane with an average deviation of 1.8and 1.4 B.t.u. per pound. However, these methods are unsatisfactory for ethyl alcohol as indicated by average deviations of 10.8 B.t.u. per pound (32%) for correlation (2), and 10.7 B.t.u. per pound (31%) for correlation (3). The same correlations can be used to estimate the enthalpy deviations for the ethyl alcohol-hydrocarbon mixtures using a pseudocritical point concept. Here again, the errors are large when compared with the data of Tables I to IX. The average deviations range from 3 to 46%, depending upon the hydrocarbon content of the mixture. The conventional generalized correlations, while satisfactory for hydrocarbons, are not suitable for ethyl alcohol or its mixtures with benzene and pentane.

NOMENCLATURE

- enthalpy correction applied to data points h
- Η enthalpy at any pressure, smoothed enthalpy data -
- latent heat of vaporization L =
- T= absolute temperature
- W weight =

mole fraction = х

Superscript

0 = datum state, 77° F.

Subscripts

critical property; calorimeter in Equation 1

formation or Freon 11 =

- i component in a mixture ===
- mixture property or mixture т ==
- 1 = inlet to the calorimeter
- 2outlet to the calorimeter or dimer

ACKNOWLEDGMENT

This work was conducted with the aid of fellowships from the Dow Chemical Co., the Du Pont Co., and Procter and Gamble Co. The assistance of Alden H. Emery, Jr., is also acknowledged.

LITERATURE CITED

- Edmister, W. C., Petrol. Refiner 37, 195 (1958). (1)
- Hougen, O. A., Watson, K. M., "Chemical Process Principles," (2)Vol. 11, Wiley, New York, 1947.
- Lydersen, A. L., Greenkorn, A. R., Hougen, O. A., "Gener-(3)alized Properties of Pure Fluids," Engineering Experimental Station Rept. No. 4, University of Wisconsin, Madison, Wis., October 1955.
- (4) McCracken, P. G., Smith, J. M., A. I. Ch. E. Journal 2, 498 (1956)
- (5) Organick, E. I., Studhalter, W. R., Chem. Eng. Progr. 44, 847 (1948).
- (6)Papini, G., Cuomo, S., Antincendio (Rome) 8, 338 (1956).
- Schnaible, H. W., Van Ness, H. C., Smith, J. M., A. I. Ch. E. (7)Journal 3, 147 (1957)
- Smith, J. M., Reid, R. C., Chem. Eng. Progr. 47, 415 (1951). $(\mathbf{8})$
- (9) Storvick, Truman, S., Ph. D. thesis, Purdue University, Lafayette, Ind., January 1959.

RECEIVED for review March 30, 1959. Accepted October 15, 1959.

Rare Earth and Yttrium Fluorides

Solubility Relations in Various Molten NaF-ZrF4 and NaF-ZrF4-UF4 Solvents

W. T. WARD, R. A. STREHLOW, W. R. GRIMES and G. M. WATSON Oak Ridge National Laboratory, Oak Ridge, Tenn.

 ${f A}_{
m S}$ PART of an extensive study of phase relations in molten fluoride mixtures, the solubilities of cerium, lanthanum, samarium, and yttium trifluorides (LaF_3 , CeF_3 , SmF_3 , and YF_3) in various solvent compositions were determined. Inasmuch as the series of rare earths offers distinct regularity of properties in both elemental and combined states, it was hoped that these solubility measurements might allow some interesting comparisons to be made. In addition, because the rare earth trifluorides are known to form solid solutions, and the liquidus temperatures involved in these systems are high, equilibria might be reached rapidly enough to effect a rare earth extraction by a solid solvent.

The solubilities of some rare earth fluorides, (principally those of samarium, europium, and gadolinium) are also important in designing a nuclear reactor fueled with a molten fluoride mixture containing fissionable material. These three rare earths are expected to account for significantly more than half of the nuclear poisoning by nongasous elements. Consequently, information obtained in. this work was expected to be pertinent to design of a poison depletion process and to give assurance that precipitation of these fission products will not hinder the operation of a reactor.

Because the fission products formed in greater yields include several of the rare earths, rare gases, alkaline earths, and the 4d transition elements (particularly elements Nos. 41-46), the selection of subjects for initial study was made after considering relative importance based on fission yield

and thermal neutron cross sections of the various products. This report presents some of the data obtained in this laboratory on the solubility of LaF_3 , CeF_3 , SmF_3 , and YF_3 in a sodium, zirconium, and uranium fluoride solvent consisting of 50 mole %~ NaF, 46 mole %~ ZrF4 and 4 mole %~UF₄. Two pseudo-ternary systems, LaF₃-CeF₃-solvent and CeF_3 -SmF_3-solvent have also been studied, as have various other mixtures of fission products to determine their solubility relations. Several series of experiments were carried out using NaF-ZrF₄ solvents of other compositions so that some information relating to the shape of the liquidus surface in the NaF-ZrF₄-CeF₃ system could be obtained. In addition to delineating the allowable rare earth concen-

Table	١.	Solubilities	of	CeF ₃ i	in Sc	lvents of	
Various	s Co	mpositions	ati	Three	Tem	perature	s

	Me	olecular Wt. Us	sed			
Solvent Co	mposition,	for Solvent Mixture		. ~ 0		
		$O_{\rm M}$	Mole % CeF ₃ at			
NaF	ZrF₄	G./ Mole	550° C.	675° C.	800° C.	
42	58	114.6	3.0	8.2	10.3	
50	50	104.5	2.12	3.0	4.4	
53	47	100.9	1.64	2.37	3.9	
59	41	93 .3	0.56	0.62	1.61	
63	37	88.4	0.26	0.44	1.07	
80.5	19.5	66.4			4.71	
+0.5 mole	%.					